Deriving a Unified Fault Taxonomy for Event-Based Systems

Waldemar Hummer, Christian Inzinger, Philipp Leitner, Benjamin Satzger, Schahram Dustdar

Distributed Systems Group, Vienna University of Technology

6th ACM International Conference on Distributed Event-Based Systems (DEBS)

Berlin (Germany)
July 18, 2012
Motivation

- **Dependability and Fault Tolerance are Key Requirements**
 - For business- and safety-critical applications
 - Dictated by business regulations, contractual agreements, laws, ...
 - Many research directions have common understanding of faults, e.g.:
 - Program and operating system faults [3]
 - Faults in object-oriented software [10]
 - Faults in service-based applications [11, 14]
 - Faults in memory devices [70]

- **Emerging Field of Event-Based Systems (EBS)**
 - Different sub-areas and specializations of EBS, e.g.:
 - Complex Event Processing (CEP),
 - Event Stream Processing (ESP),
 - Wireless Sensor Networks (WSNs),
 - Event-Driven Programming, etc.
 - Many commonalities, yet: **No common understanding of potential faults and fault sources in EBS**
Contribution Outline

- Identification of 5 Main Sub-Areas of EBS
 - Extensive Literature Review (75+ papers) of the Past Two Decades

- Definition of a Common Model for EBS
 - Compiled From Previous Publications, e.g.:
 - *A Conceptual Model for Event Processing Systems* (Moxey et al., 2010)
 - *Towards a Common Event Model for an Integrated Sensor Information System* (Fowler and Qasemizadeh, 2009)
 - *Toward a Common Event Model for Multimedia Applications* (Westermann and Jain, 2007)

- Deriving a Fault Taxonomy for EBS
 - Based on Highly Influential Previous Work (Avizienis et al., 2004)
 - Taxonomy Dimensions: Fault Classes and Fault Sources
 - Discussion of 30 Fault Instances

- Discussion of Application Possibilities
 - Fault Injection
 - Fault Analysis
Sub-Areas of EBS

- Event-Driven Interaction Paradigms
 - Event-Driven Programming (EDIP)
 - Event Stream Processing (ESP)
- Event-Driven Business Process Management (EDBPM)
 - Pub/Sub
 - Producers
 - Consumers
 - Subscriptions
 - Events
 - Nodes
 - Operations
- Wireless Sensor Networks (WSN)
 - Complex Event Processing (CEP)
 - Power Constraints
 - Dynamic Topologies
 - Event Routing
 - Monitoring
 - Process Mining
 - Process Instances
- Complex Event Processing (CEP)
 - Analytics & Prediction
 - Activity Detection
 - Load Shedding
 - Approximate Queries
 - High Throughput
Sub-Areas of EBS

- Various Relationships Between Sub-Areas
 - Share Many Commonalities
 - Different Terminology for Similar Concepts

<table>
<thead>
<tr>
<th>Concept [50]</th>
<th>EDIP</th>
<th>ESP</th>
<th>CEP</th>
<th>WSN</th>
<th>EDBPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>event</td>
<td>notification</td>
<td>tuple</td>
<td>event</td>
<td>datum</td>
<td>invocation</td>
</tr>
<tr>
<td>producer</td>
<td>publisher</td>
<td>source</td>
<td>producer</td>
<td>sensor</td>
<td>service/activity</td>
</tr>
<tr>
<td>consumer</td>
<td>subscriber</td>
<td>sink</td>
<td>consumer</td>
<td>sink</td>
<td>service bus</td>
</tr>
<tr>
<td>event processing</td>
<td>service</td>
<td>operator</td>
<td>agent</td>
<td>node</td>
<td></td>
</tr>
<tr>
<td>channel</td>
<td>channel</td>
<td>stream</td>
<td>event bus</td>
<td>link</td>
<td>service bus</td>
</tr>
<tr>
<td>derived event</td>
<td>merged message</td>
<td>event pattern</td>
<td>complex event</td>
<td>fused information</td>
<td>composite service</td>
</tr>
</tbody>
</table>

- Idea: Explicitly Combine and Integrate Different Views
 - Identification of potential issues and faults

 Diverse Goals and Specializations

 Potential Faults on Various Conceptual Levels

- Step towards a better understanding of EBS
Common Model for EBS

- Based on the terminology of Moxley et al [50], e.g.,
 - Event Processing Agent (EPA)
 - Event Processing Network (EPN)
 - ...
Common Model (2)

- **Basic Model Artifacts**
 - Event, Subscription, Producer, Consumer, …
 - Three Core Interfaces
 - Subscription, Notification, Publication

- **Artifacts to Model Technical Details**
 - Buffer (for event input and output)
 - State
 - Input-Output Operator Function
 - Deployment of EPAs

- **Artifacts for Advanced Concepts**
 - Complex Event
 - Correlation
 - Dependency
EPA = Event Processing Agent
Behavior of EPAs defined by two types of functions

- **Input-Output Operator Function**
 - \(\text{op}: (BE \times S) \rightarrow (BE \times S) \)

- **Event Routing Functions**
 - \(\text{in}: (E \times P \times S) \rightarrow \mathcal{P}(B) \)
 - \(\text{out}: (E \times \mathcal{P}(B) \times S) \rightarrow \mathcal{P}(C) \)

Variables
- \(E \) ... Domain of Possible Events
- \(P \) ... Set of Event Producers
- \(C \) ... Set of Event Consumers
- \(B \) ... Set of Event Buffers
- \(S \) ... State of the EPA
- \(\mathcal{P}(X) \) ... Powerset of \(X \)

Acronyms
- EPAs: Event-Driven Process Automata
Fault Taxonomy

- **14 Elementary Fault Classes**
 - What are fundamental characteristics of the faults?
 - Based on Highly Influential Work by Avizienis et al. [5]
 - Basic concepts and taxonomy of dependable and secure computing. *IEEE Transactions on Dependable and Secure Computing*, 2004

- **19 Fault Sources**, Grouped into 6 Categories
 - Which elements of the system are responsible for causing the fault?
 - Closely based on the artifacts in the common model for EBS

- **30 Distinct Fault Instances**
 - What are concrete manifestations of the fault taxonomy in real-life event-based systems?
 - Derived along the Fault Classes Taxonomy
 - Attributed to the respective Fault Sources
Fault Classes

- Phase of Creation or Occurrence
 - Development Faults
 - Operational Faults
- Level in Solution Stack
 - Platform Faults
 - Business Logic Faults
- System Boundaries
 - Internal Faults
 - External Faults
- Persistence
 - Permanent Faults
 - Transient Faults
- Dimension
 - Hardware Faults
 - Software Faults
- Phenomenological Cause
 - Natural Faults
 - Human-Made Faults
- Capability
 - Accidental Faults
 - Incompetence Faults

- Differences to Avizienis et al. [5]:
 - Additional: Level in Solution Stack
 - Left Out: Malicious/Non-Malicious and Deliberate/Non-Deliberate (security-related and not as relevant for dependability)
Fault Sources

- Six Categories of Fault Sources
 - compiled from earlier work on fault localization [3, 63] and root cause analysis [38]
Identified Fault Instances

Taxonomy Tree based on the 14 Fault Classes

- Perm ... Permanent
- Trans ... Transient
- HW ... Hardware
- SW ... Software
- Na ... Natural
- Hu ... Human-Made
- Ac ... Accidental
- In ... Incompetence
Identified Fault Instances (2)

- Factors of Influence Responsible for Different Faults
- Grid of Fault Sources (rows) and Fault Instances (columns)
 - Red dots mark the intersection of faults and factors of influence (i.e., potential fault sources)
Fault Examples

- **Fault: Buffer Overflow**
 - **Problem Manifestation**
 - Attempt to store more events than available (free) buffer slots.
 - **Main Affected Model Artifacts**
 - EPAs, Event Buffers, Input-Output Operator Function
 - **Fault Classes**
 - Phase of Creation or Occurrence: Operational
 - Level in Solution Stack: Platform
 - System Boundaries: External
 - Persistence: Transient
 - Dimension: Software
 - Phenomenological Cause: Human-Made
 - Capability: Accidental
 - **Potential Fault Sources**
 - Environment, External Inputs, Code Functions, System State, Software Assets
Fault: **Outdated Subscription**

- **Problem Manifestation**
 - Subscription with past expiry date has not been garbage-collected.
 - (comparable to a *dangling pointer* in programming languages)

- **Main Affected Model Artifacts**
 - EPAs, State, Subscriptions

- **Fault Classes**
 - Phase of Creation or Occurrence: Development
 - Level in Solution Stack: Platform
 - System Boundaries: Internal
 - Persistence: Permanent
 - Dimension: Software
 - Phenomenological Cause: Human-Made
 - Capability: Incompetence

- **Potential Fault Sources**
 - External Inputs, System State
Fault: **Transmission Bit Flip**

- **Problem Manifestation**
 - Event messages are unintentionally modified when transmitted over a (unreliable) network link.

- **Main Affected Model Artifacts**
 - EPAs, Event, Event Properties, Input-Output Operator Function

- **Fault Classes**
 - Phase of Creation or Occurrence: **Operational**
 - Level in Solution Stack: **Platform**
 - System Boundaries: **External**
 - Persistence: **Transient**
 - Dimension: **Hardware**
 - Phenomenological Cause: **Natural**
 - Capability: **Accidental**

- **Potential Fault Sources**
 - Environment
Application Possibilities

- **Huge Potential for Practical Applications**
 - Dependable Operation of EBS Poses Great Challenges
 - Exciting Research Questions, Focus of Our Ongoing Work

- **Two Main Orthogonal Goals**
 - Fault Diagnosis [30] → Fault Detection, Fault Isolation, ...
 - Fault Injection [31,32] → Fault Tolerance

- **Approach Outline**
 - Encode the UML Model in a Software Tool
 - Model and Monitor Runtime Aspects of the Target Platform
 - „Models@run.time“ approach (e.g., Blair et al.)
 - 2-Way Synchronization
 - Keep the model in sync with the real system
 - Allow changes in the model to be reflected in the real system
 - Detect/Predict Faults (Observation) & Inject Faults (Manipulation)
Application Outlook

- Rough Architectural Sketch (Future Work)

```
Fault Simulation and Diagnosis Tool

Model-to-System Adapter

EBS Platform 1

Model-to-System Adapter

EBS Platform 2

Runtime Models

2-Way Synchronization
```
Conclusion

- The Need for a Common Understanding of Faults
 - EBS is a Heterogeneous Research Field
 - Different Specializations, Yet Many Commonalities
 - Most research areas generated comprehensive fault taxonomies
 - So far, no common model of faults in EBS

- A Step Towards a Fault Taxonomy for EBS
 - Identification of 5 Main Sub-Areas of EBS
 - Common Model for EBS
 - Integrates the Requirements of Various Previous Publications
 - Taxonomy Derived Along 14 Fault Classes, 6 Types of Fault Sources
 - Discussion of 30 Concrete Fault Instances

- Exciting Future Research Directions
 - Implementation of the Model and Fault Taxonomy
 - Fault Diagnosis and Fault Injection
 - Collaborative Modeling of Fault Taxonomies
 - Integrate more viewpoints and sub-areas into the model
Discussion
References (1)

References (3)

References (5)